Mechanisms of noise-resistance in genetic oscillators
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A wide range of organisms use circadian clocks to keep internal
sense of daily time and regulate their behavior accordingly. Most
of these clocks use intracellular genetic networks based on positive
and negative regulatory elements. The integration of these “cir-
cuits” at the cellular level imposes strong constraints on their
functioning and design. Here, we study a recently proposed model
[Barkai, N. & Leibler, S. (2000) Nature (London), 403, 267-268] that
incorporates just the essential elements found experimentally. We
show that this type of oscillator is driven mainly by two elements:
the concentration of a repressor protein and the dynamics of an
activator protein forming an inactive complex with the repressor.
Thus, the clock does not need to rely on mRNA dynamics to
oscillate, which makes it especially resistant to fluctuations. Oscil-
lations can be present even when the time average of the number
of mRNA molecules goes below one. Under some conditions, this
oscillator is not only resistant to but, paradoxically, also enhanced
by the intrinsic biochemical noise.

he environment changes in a highly periodic manner. There

are, among other changes, daily cycles of light and dark as
well as annual cycles of changing climates and physical condi-
tions. Such environmental periodicity may create the necessity
for organisms to develop internal time-keeping mechanisms to
accurately anticipate these external changes and modify their
state accordingly (1). In particular, a wide range of organisms,
as diverse as cyanobacteria and mammals, have evolved circa-
dian rhythms—biological clocks with a period of about 24 h that
evoke and regulate physiological and biochemical changes to
best suit different times of the day.

Recent findings show that the molecular mechanisms upon
which these clocks rely share many common features among
species (2). The main characteristic is the presence of intracel-
lular transcription regulation networks with a set of clock
elements that give rise to stable oscillations in gene expression.
A positive element activates genes coupled to the circadian clock.
It simultaneously promotes the expression of a negative element,
which in turn represses the positive element. The cycle completes
itself upon degradation of the negative element and re-
expression of the positive element.

A crucial feature of circadian clocks is the ability to maintain
a constant period over a wide range of internal and external
fluctuations (1). Such robustness ensures that the clock runs
accurately and triggers the expression of clock-dependent genes
at the appropriate time of the day. For instance, fluctuations in
temperature affect chemical reaction rates and may perturb
oscillatory behavior. Another source of fluctuations may be the
presence of internal noise caused by the stochastic nature of
chemical reactions (3). Low numbers of molecules may be
responsible for random fluctuations that can destabilize the
oscillatory behavior of the biochemical network (4). Yet,
circadian clocks maintain a fairly constant period amidst such
fluctuations.

Description of the Model. To study possible strategies, or princi-
ples, that biological systems may use to minimize the effect of
stochastic noise on circadian clocks, we examined a minimal
model based on the common positive and negative control
elements found experimentally (3). This model is described in
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Fig. 1. It involves two genes, an activator 4 and a repressor R,
which are transcribed into mRNA and subsequently translated
into protein. The activator 4 binds to the A and R promoters,
which increases their transcription rate. Thus, 4 acts as the
positive element in transcription, whereas R acts as the negative
element by sequestering the activator.

The deterministic dynamics of the model is given by the set of
reaction rate equations

dDJdt = 04Dy — y4D4A
dDg/dt = 0grDy — yrDrA
dD}/dt = y.D4A — 6,D),
dDg/dt = yrDrA — 0xD}x
dM /dt = oD} + auD 4 — 8y M4
dA/dt = B,M, + 6,D) + 0xD} th

= A(y4D4 + yrDr + vcR + 84)
dMg/dt = aRDp + agDgr — 8y Mg
dR/dt = BrMp — ycAR + 8,C — 8zR
dCldt = ycAR — 8,C,

where the variables and constants are as described in the caption
for Fig. 1. This simple model is not intended to reproduce the
particular details of each organism but to grasp the properties
that the core design confers. As in any general model, the
parameters of the values we use are typical ones. For instance,
the rates for bimolecular reactions are all in the range of
diffusion limited reactions.

The preceding equations would be strictly valid in a well stirred
macroscopic reactor. At the cellular level, a more realistic
approach has to consider the intrinsic stochasticity of chemical
reactions (5), which can be done by transforming the reaction
rates into probability transition rates and concentrations into
numbers of molecules. One then obtains the so-called master
equation, which gives the time evolution of the probability of
having a given number of molecules. There is no general
procedure to solve this type of equation analytically, but it is the
starting point to simulate the stochastic behavior of the system.
The basic idea behind such simulations is to perform a random
walk through the possible states of the system, which are defined
by the numbers of molecules of the different reacting species.
Starting from a state with given numbers of molecules, the
probability of jumping to other states with different numbers of
molecules (i.e., the probability for an elementary reaction to
happen) can be computed from the master equation. One can
pick up a state and the jumping time according to that probability
distribution, consider the resulting state as a new initial state,
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Fig. 1. Biochemical network of the circadian oscillator model. D4" and Da
denote the number of activator genes with and without A bound to its
promoter respectively; similarly, Dg" and Dg refer to the repressor promoter;
M4 and Mg denote mRNA of A and R; A and R correspond to the activator and
repressor proteins; and C corresponds to the inactivated complex formed by A
and R. The constants a and «' denote the basal and activated rates of
transcription, B the rates of translation, § the rates of spontaneous degrada-
tion, ythe rates of binding of A to other components, and 6 denotes the rates
of unbinding of A from those components. Except if otherwise stated, in this
paper we have assumed the following values for the reaction rates: aa = 50
h71, ap' =500 h71, ag = 0.01 h71, ag' =50 h71, Ba= 50 h71, Br= 5 h71, Sma =
10 h71, dur = 0.5 h71, Sa=1 h71, Sr=0.2 h71, ya=1 mol~! hr’1, yr=1 mol~!
hr=', yc=2mol "hr=', 64, =50 h~', g = 100 h~ ', where mol means number
of molecules. Theinitial conditionsare Do = Dr= 1mol, Da’' = Dg' = Ma= Mg =
A =R = C=0, whichrequire that the cell has a single copy of the activator and
repressor genes: Da + D’ = 1 mol and Dg + Dg' = 1 mol. The cellular volume
is assumed to be the unity so that concentrations and number of molecules are
equivalent. Notice that we assume that the complex breaks into R because of
the degradation of A and, therefore, the parameter 54 appears twice in the
model.

and repeat this procedure until some final state or time is
reached. In this way, the numbers of molecules change in time
with the statistical properties given by the master equation.
There are several algorithms to implement this. The main
difference among them is the specific way in which they compute
the probabilities and select the states. For chemical reactions
with few components, it is customary to use the so-called
Gillespie algorithm (6).

This intrinsic probabilistic behavior in the evolution of the
number of molecules gives rise to fluctuations that are usually
referred to as noise. In general, the term noise is used for any
disturbance interfering with a signal or with the operation of
system. In the case of chemical reactions, the signal would be the
average production of the reacting species, whereas the distur-
bance would arise as a consequence of the fluctuations around
that average value. We use the term noise rather than fluctua-
tions to emphasize the disturbing effect that these fluctuations
can have. Thus, although related, both terms do not mean the
same. For instance, there can be large fluctuations in some
molecular species but, if their characteristic time is very short
compared with those of other processes that take place, they
would introduce little noise.

In Fig. 2, we compare the results of the stochastic and
deterministic approaches. We show the levels of A protein and
R protein over time for the set of parameter values and initial
conditions given in the caption of Fig. 1. The deterministic
results were obtained from numerical integration of Eq. [1],
whereas the stochastic results were obtained by computer sim-
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Fig. 2. Oscillations in repressor and activator protein numbers obtained

from numerical simulations of the deterministic (a and b) and stochastic (cand
d) descriptions of the model.

ulation using the Gillespie algorithm. The main difference
between the deterministic and stochastic time courses is the
presence of random fluctuations in the latter. In the determin-
istic model, every circadian cycle is identical to the previous one.
The stochastic model shows some variability in the numbers of
molecules and the period length, which correspond to the
intrinsic fluctuations of the biochemical network. For these
values of the parameters, both stochastic and deterministic
approaches give similar results. We also have used different
initial conditions, and in all of the cases we have observed, the
behavior of the long-term solution is the same.

Model Simplification. To gain further insight into the essential
elements that are responsible for the oscillations, we will simplify
as much as possible the deterministic rate equations. By making
various quasi-steady-state assumptions (7), it is possible to
simplify the set of Eq. [1] into a two-variable system with the
repressor R and the complex C as the two slow variables:

dR BR agbr + aRVRA(R)

dt 8MR 0 + YrRA(R)

dcC 21
s veAR)R — 8,C

where

PNAS | April 30,2002 | vol.99 | no.9 | 5989

BIOPHYSICS



2000 - T - T

a
1500 o i 5 4 ; IiI . !
% U 1000 J: :III |I: |||. II: :I .III |.: II: |I I|'I ]
e WA I | ' ¥ 1 | 1, | "
2o 'h .' \ i\ { N L L
© 500 f\ if\ | \ il i i\ Al .‘_.‘.\ \ I\
s NN
E 0 r | | | | |
u— 0 50 100 150 200
= 3000 - .
| -
@ b
= ! | | §
E Y 2000 I\ ‘|‘ lln Ir| :f:n I.: ! I||
- # i Nl fff | il i f II‘P‘
C Mo S L S L \ i
1000 _'fi\ rn [\ g l AN AN
! thoy ."," ."I Ve J'I\ ,\_'\\ IR
D . gk g il Y V t i
bl £ v i (L, R o T YO e L i b e L VI N
0 ; I \\ | \ | \ Fou | \ i k: \\
0 50 100 150 200

time (hr)

Fig.3. Time evolution of the quantities R (solid line) and C (dashed line) for
the system reduced to two variables (a) by various quasi—steady-state assump-
tions and for the complete system (b).

. 1 1

A(R) =5 (a4p(R) = K) + 5\(eap(R) = Ko)* + daap(R)K,

with p(R) = Ba/8ma(vcR + 84) and K; = 04/v4. Notice that the
nonlinearity in the equatlons enters trough the qua51 equilibrium
value of 4, A(R), which is a function of R. The main idea behind
these approximations is that there are fast and slow variables.
Fast variables are assumed to be at an effective equilibrium,
whereas slow variables are responsible for the dynamics of the
system. Thus, given the set of Eq. [1], we assume that all of the
derivatives except dR/dt and dC/dt are zero.

In Fig. 3, we show that for the values of the parameters we use
the numerical solutions for the trajectories of the two-variable
system Eq. [2] agree closely with the solutions of the full system
Eq. [1], except for quantitative differences in the peak levels and
times at the beginning of each cycle. These differences arise
because the time-scale separation between fast and slow vari-
ables is not sufficiently large for quasi-steady-state assumptions
to be exact. These results indicate, nevertheless, that the dynam-
ics of the system is mainly determined by two component
concentrations: those of the complex and the repressor. The
other components are driven mainly by these two elements and
their effects enter the system through effective parameters. It is
worth emphasizing that the reduced two-variable model is
intended just to offer insights into the qualitative behavior of the
system and to show how the properties that one observes in the
full system are already present in a simple two-variable model.
Thus, whenever we present simulation results for the determin-
istic system, except if otherwise stated, we are referring to the full
system. Regarding the validity of the two-variable model, it is a
good approximation when the dynamics of mRNA and the
activator is faster than that of the complex and repressor. For
instance, it will remain valid if 6z is decreased or some of 84, 8,4,
dmr, 04, and Og are increased with respect to the parameters of
the caption for Fig. 1.

Limit Cycle Oscillations and Stability Analysis. The existence of
oscillations in the two-variable system can be inferred from
application of the Poincaré-Bendixson theorem (8). This theo-
rem states that a two-dimensional system of the type we are
considering exhibits limit cycles if it is confined in a closed
bounded region that does not contain any stable fixed points.
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Fig.4. Phase portrait of the two variable oscillator Eq. [2] for the parameter
values given in the caption for Fig. 1 (the drawing is not to scale). The thick line
illustrates the trajectory of system. (Ro, Co) is the fixed point of the system, and
R=dR/dt = 0and C=dC/dt = 0 are the R and C nullclines, respectively. The
solid arrows give the orientation of the direction field on the nullclines.

The trajectory of the system is confined because the number of
molecules cannot reach infinite values. The fixed points and their
stability can be determined by following a standard linear
stability analysis. There is a single fixed point for positive
concentrations. In our case, the signs of the real parts of the
eigenvalues of the matrix describing the linearized dynamics
around this point are given by

_ ’fﬁfl(m | g Pr (er = ar)Oryr
T IR e Sy [Or + yrAR)T?
—[ycA(R) + 8z + 84], [3]

where 1 is the trace of the matrix. All of the quantities are
evaluated at the fixed point (Ry,Cy). When 7 is positive, the real
part of the eigenvalues is positive, the fixed point is unstable, and
there is a limit cycle in the system, which gives sufficient
conditions for the existence of oscillations. Evaluation of Eq. [3]
shows that 7 is indeed positive for the set of parameters we are
using. The domain in which 7 is positive is rather broad. For
instance, the function 7 remains positive when 64 and 6 are
multiplied by a factor K with 0.024 < K < 10.7, when all
transcription rates (« and «”) are multiplied by K with K > 0.08,
or when protein and mRNA degradation rates are multiplied by
K with 0.0009 < K < 3.5. When 7 is negative, the fixed point is
stable and, in principle, no conclusion about the existence of
limit cycles can be drawn. In this case, the presence of oscillations
also could depend on the initial conditions. For the full model,
the ranges of parameters that give rise to oscillations are not
exactly the same but remain very close to the previous ones.
The mechanism responsible for oscillations is illustrated in
Fig. 4 through the phase portrait of the two—variable model.
Starting with low numbers of initial molecules near the origin of
the phase plane, the trajectory rapidly shoots upwards along the
R = 0 nullcline (the dot over a variable means its time deriva-
tive). Here, the high levels of A, present because of
auto—activated transcription, rapidly induce the formation of
the complex C. Reaching the maximum of the nullcline, the
trajectory “falls off” the edge and moves rapidly diagonally right
and downwards, corresponding to a drop in C and a rise in R. The
trajectory curves around the R = 0 nullcline and hits the C = 0
nullcline, where it slowly returns to the left and approaches the
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Fig.5. Time evolution of R for the deterministic Eq. [1] (a) and stochastic (b)
versions of the model. The values of the parameters are as in the caption of Fig.
1, except that now we set 8g = 0.05 h~'. For these parameter values, 7 < 0, so
that the fixed point is stable.

fixed point (Ro,Co). When approaching the fixed point, R de-
creases sharply, taking the trajectory past the fixed point and
sending it back upwards to initiate a new cycle.

The trajectory in Fig. 4 comprises a fast phase corresponding
to the rapid production of C and R, and a slow phase corre-
sponding to the slow degradation of R. These two distinct phases
are characteristic of excitable systems, the classic example of
which is the Fitz Hugh—Nagumo model for action-potential
transmission in neurons (9, 10). The fast and slow legs corre-
spond to the excitable and refractory phases of the system,
respectively. Thus, the system oscillates as it avoids the fixed
point (Ro,Co) and hits the R = 0 nullcline on the left to begin the
excitable phase of a new cycle.

As we have already pointed out, the deterministic analysis can
be useful to grasp the main properties of the system under
certain conditions. Unfortunately such conditions are not known
a priori without a stochastic analysis. Surprisingly enough, we
have found that parameter values that give rise to a stable steady
state in the deterministic limit continue to produce reliable
oscillations in the stochastic case, as shown in Fig. 5. Therefore,
the presence of noise not only changes the behavior of the system
by adding more disorder but can also lead to marked qualitative
differences.

How can the system continue to produce oscillations even
when deterministic rate equations predict a stable steady state?
The system always evolves toward a stable fixed point, as
sketched in Fig. 6. However, a perturbation of sufficient mag-
nitude near the fixed point, e.g., as illustrated by the dotted arrow
in Fig. 6 (notice that the figure has not been drawn to scale, and
that the size of the arrow is not representative of the actual size
of the perturbation), may initiate a new cycle. For low numbers
of molecules, the intrinsic fluctuations of chemical reactions can
be large enough to continually send the system into the fast phase
after each cycle and thus produce sustained oscillations. In the
deterministic limit (or close to it), there are no perturbations (or
the perturbations are too small) to initiate a new cycle, and the
trajectory stays close to the fixed point. In this case, the system
performs better if enough noise is present in the system. This
situation is analogous to that observed in the Fitz Hugh—-Nagumo
model, where an optimal amount of noise maximizes the reli-
ability of the oscillations (11). It is important to realize that the
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Fig. 6.
into the stable fixed point (Ro,Co). The dotted arrow to the left of the fixed
point illustrates a perturbation that would initiate a single sweep of the
(former) oscillatory trajectory.

Phase portrait as in Fig. 4 but for a situation in which the system falls

effects that noise may have on nonlinear systems can be difficult
to predict and rather paradoxical (12). Therefore, the smaller
number of molecules does not necessarily imply more irregular
behavior of the system, as one might intuitively assume (4, 13).

Significant Parameters and Noise Resistance. The mechanism re-
sponsible for oscillations involves only two variables. This fact
has some important consequences for the functioning of the
clock. If we consider the deterministic limit, a two-dimensional
dynamical system of this type either oscillates regularly or does
not oscillate at all. In two dimensions, because trajectories
cannot cross, fixed points and periodic orbits are the only
possible attractors. Other more complicated behaviors such as
chaos or quasi periodicity are not allowed (8). On the other hand,
the intrinsic stochastic fluctuations of the remaining variables
are effectively averaged and do not significantly affect the
performance of the system.

For instance, one variable that usually plays a prominent role
in many circadian rhythm models is the number of mRNA
molecules (14). In our case, however, mRNA does not enter
directly into the dynamics. It is just an intermediate step in the
production of the proteins. Thus, if protein production remains
unaltered, the system will oscillate regardless of the number of
mRNA molecules involved. For instance, increasing simulta-
neously the degradation rates of mRNA and the translation rate
of the proteins has no effect on protein dynamics at all in the
deterministic limit of the two-variable model. In the stochastic
case, the effects are negligible. Fig. 7 shows the time evolution
of repressor mRNA and protein levels in the system for B4, Br,
dy4 and 8yr multiplied by a factor of one hundred. The system
essentially alternates between having zero and one mRNA
molecule in the cycle, and the proteins continue to exhibit
remarkably good oscillations.

There are also parameters that do affect the properties of the
oscillations. In the deterministic limit, oscillations are always
regular (provided that the two-variable model is a good approx-
imation). When fluctuations are taken into account, the reli-
ability of the oscillations may depend on those parameters. One
such parameter, as we have seen in the previous section, is the
repressor degradation rate 8g. This parameter affects the period
of the oscillations (compare, e.g., Figs. 2 and 5) and also the
stability of the fixed point. One can infer from Eq. [3] that, for
high or low values of 6, the fixed point becomes stable. In such
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Fig.7. Stochastictime evolution of the number of activator (a) and repressor
(c) molecules, and the number of activator (b) and repressor (d) mMRNA mol-
ecules. The values of the parameters are as in the caption for Fig. 1 but now
with Ba = 5000 h71, Br = 500 h71, Sua = 1000 h71, and Syr = 50 h-1.

cases, the deterministic system stops oscillating, but this does not
need to be so for the stochastic one, which may continue
producing reliable oscillations.
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Notice that the positive feedback is a key element in the clock
dynamics. Its most obvious use is the generation of the instability
that gives rise to oscillations. But it has another not so obvious
role that is closely related to the resistance to noise. In general,
gene regulation is a slow process (with typical characteristic
times of about 1 h) and, as a such, is prone to be affected by
fluctuations. This problem gets even worse if the dynamics relies
in several coupled-transcriptional feedbacks, because the effects
of the fluctuations are then amplified. The positive feedback
gives a fast transcriptional switch, allowing it to move fast from
low- to high-transcription rates. In this way, the time in which the
system is prone to fluctuations is greatly reduced.

Conclusions

The presence of noise in transcriptional and enzymatic networks
is a fundamental consequence of the stochastic nature of bio-
chemical reactions. The ability to function effectively and con-
sistently amidst such random fluctuations is a major issue in gene
expression and network behavior. In this paper, we have studied
how different factors affect a simple model for circadian rhythms
that exhibits noise resistance. We found that the oscillations in
this model are driven mainly by two components, a repressor
protein and an activator-repressor complex. This fact is re-
sponsible for the reliability of the oscillations. First, a two-
dimensional dynamical system of this kind has a very simple
behavior: in the deterministic limit, it either oscillates or goes to
a steady state. Second, noise and perturbations in the other
variables affect the system only slightly, because they do not
enter directly the dynamics. Finally, resistance to noise is
achieved as the number of molecules of any of the two key
components reaches small values only for short periods of time,
or when they are not driving the dynamics of the system. In this
way, even though some molecular species may be present in very
low numbers, the intrinsic stochasticity of biochemical reactions
can be bypassed.

It is important to emphasize that organisms have evolved
networks to function in the extremely noisy cellular environ-
ment. Suitable network designs, as those that are now emerging
from the experimental data (3, 15), can confer resistance against
such noise. In addition, some of these networks may not only be
resistant to but could also be taking advantage of the cellular
noise to perform their functions under conditions in which it
would not be possible by deterministic means.
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